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Abstract

A technique has been developed for the calculation of the

T E RT T
0

T

m d∫ ′ − ′ ′exp( / ) .

The accuracy of the method is tested by comparing its predictions with numerical results and those

of a method due to Quanyin and Su.
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Introduction

Techniques based on non-isothermal thermoanalytical methods such as differential

thermal analysis (DTA), thermogravimetry (TG) etc. [1, 2] find wide applications in

the analysis of variety of reactions. A serious difficulty of the mathematical model-

ling of the non-isothermal processes results from the fact that the integral

T E RT T
0

T

m d∫ ′ − ′ ′exp( / )
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(E, activation energy, R, universal gas constant, T, absolute temperature) can not be

solved in a closed form. The exponent m arises from the temperature dependence of

the pre-exponential factor. The cases m=1/2 and m=1 occur respectively in the colli-

sion theory and transition state theory [3–5]. The first case describes a surface reac-

tion between a gaseous and solid reactant and second one represents single reactant

solid state decomposition. However, other possibilities do exist to describe such reac-

tions as solid–solid diffusion controlled and pressure-dependent reactions.

Recently Quanyin and Su [6] proposed new approximations for the evaluation of

the integral

T E RT T
0

T

m d∫ ′ − ′ ′exp( / )

for the special case of m=0. In the present paper we consider evaluation of the integral

for arbitrary values of the temperature exponent m. The suitability of the present tech-

nique is assessed by comparing its prediction with that of the numerical evaluation

using Gauss-Legendre quadrature [7].

Theory

Let

I m T T
E

RT
T( , ) exp .= ′ −

′
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m d (1)

With the substitution t E RT′= ′/ Eq. (1) can be expressed as
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Let us use the integral representation [7]

exp
d
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∫
t

t
t m tΓ (3)

where Γ(m,t) is the complementary incomplete gamma function [7].

Now, Eq. (2) can be expressed as

I m T
E

R
m t( , ) ( , )=








− −
m+1

Γ 1 (4)

It is evident from Eq. (3) that in order to evaluate I(m,T) one has to evaluate the

complementary incomplete gamma function Γ(m,t). We evaluate Γ(m,t) by using a

technique outlined by Sil [8]. Near t=m, Γ(m,t) varies more rapidly. For t<m+1 it is

evaluated by using its continued fraction representation [9] given by
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The continued fraction is evaluated by the rigorous quotient-difference algo-

rithm [10, 11]. The advantage of using the continued fraction representation is its

rapid convergence and high accuracy. For t>m+1, Γ(m,t) is evaluated by using a se-

ries expansion [7] given by

Γ Γ
Γ

( , ) exp( )
( )

( )
m t t t
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= − −

+ +=
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10

m

n
n

(6)

Γ(z) is the gamma function. It is evaluated by using the algorithm developed by

Roy et al. [12].

Finally I(m, T) is evaluated numerically by using Gauss-Legendre quadrature

[7]. According to this method any integral

J f(x) x=∫ d
a

b

is first converted into another one with limits betwen –1 and +1 through the transfor-

mation [7] x=0.5[(b–a)z+b+a] so that one can write

J b a f b a z b a z= − − + +
−

+

∫05 05
1

1

. ( ) [ . {( ) }]d (7)

In the Gauss-Legendre quadrature method the definite integral in Eq. (7) is ap-

proximated by a properly weighted sum of any number of particular values vj suitably

distributed between –1 and +1. If we take n terms Eq. (7) becomes

J b a f b a b a g= − − + +∑05 05 05. ( ) [ . ( ) . ( )]ν j j

j=1

n

(8)

where vj’s and gj’s (j=1, n) are, respectively, called Gauss-Legendre points and

Gauss-Legendre weight factors. Values of vj and gj for different n values are listed in

Abramowitz and Stegun [7].

For accurate numerical evaluation of I(m,T) we have to partition the interval (0,

T) into a number of sub-intervals [8] enabling us to write
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We take T1=10 K, T2=20 K... etc. For each sub-interval the integral

I m T T E RT T( , ) exp( / )= ′ − ′ ′∫ m

T

T

d

i

have been evaluated by using a 32 point Gauss-Legendre quadrature. By partitioning

technique the effective number of Gaussian points is increased.

Results and discussion

In Table 1 we report the present values of I(m,T) for m=0 together with the results of the

numerical integration. We see from Table 1 that present results agree well with numerical

results. In Table 1 we also present the values of I(0,t) by using the approximation of

Quanyin and Su [6]. We have used their expression of higher accuracy. It is evident from

Table 1 that unlike the present method their results never completely agree with the nu-

merical ones. Actually their method fails for t<5.0. Similarly it is evident from Tables 2

and 3 that the present method also work well for non-zero values of m.

Table 1 Values of I(m,T) for m=0. A(B) stands for A·10B

t Present Numerical Quanyin and Su

1 1.4850(2) 1.4850(2) 1.3244(3)

2 3.7534(1) 3.7534(1) 0.0

3 1.0642(1) 1.0642(1) 2.7045(1)

4 3.1982(0) 3.1982(1) 1.6312(1)

5 9.9647(–1) 9.9647(–1) 6.5978(–1)

6 3.1826(–1) 3.1826(–1) 2.4022(–1)

7 1.0351(–1) 1.0351(–1) 8.4313(–1)

8 3.4138(–2) 3.4138(–2) 2.9189(–1)

9 1.1384(–2) 1.1384(–2) 1.0059(–2)

10 3.8302(–3) 3.8302(–3) 3.4649(–3)

15 1.8108(–5) 1.8108(–5) 1.7313(–5)

20 9.4048(–8) 9.4048(–8) 9.1685(–5)

25 5.1569(–10) 5.1569(–10) 5.0731(–10)

30 2.3437(–12) 2.3437(–12) 2.3171(–12)

40 6.0757(–17) 6.0757(–17) 6.0365(–17)

50 1.8559(–21) 1.8559(–21) 1.8482(–21)

60 5.6522(–26) 5.6522(–26) 5.6359(–26)

70 2.7618(–30) 2.7618(–30) 2.7559(–30)
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Table 2 Values of I(m,T) for m=0.5 and 1; A(B) stands for A·10B

t
I(0.5,T) I(1,T)

Present Numerical Present Numerical

1 4.0000(3) 4.0000(3) 1.0969(5) 1.0969(5)

2 1.0584(3) 1.0584(3) 3.0133(4) 3.0133(4)

3 3.0732(2) 3.0732(2) 8.9306(3) 8.9306(3)

4 9.3764(1) 9.3764(1) 2.7613(3) 2.7613(3)

5 2.9525(1) 2.9525(1) 8.7780(2) 8.7780(2)

6 9.5044(0) 9.5044(0) 2.8460(2) 2.8460(2)

7 3.1102(0) 3.1102(0) 9.3657(1) 9.3657(1)

8 1.0308(0) 1.0308(0) 3.1181(1) 3.1181(1)

9 3.4511(–1) 3.4511(–1) 1.0479(1) 1.0479(1)

10 1.1651(–1) 1.1651(–1) 3.5488(0) 3.5488(0)

15 5.5692(–4) 5.5692(–4) 1.7140(–2) 1.7140(–2)

20 2.9102(–6) 2.9102(–6) 9.0091(–5) 9.0091(–5)

25 1.6020(–8) 1.6020(–8) 4.9779(–7) 4.9779(–7)

30 6.5296(–11) 6.5296(–11) 1.8196(–9) 1.8196(–9)

40 1.4711(–15) 1.4711(–15) 3.5623(–14) 3.5623(–14)

50 4.1110(–20) 4.1110(–20) 9.1073(–19) 9.1073(–19)

60 1.5674(–24) 1.5674(–24) 3.4774(–23) 3.4774(–23)

70 6.1334(–29) 6.1334(–29) 1.3622(–27) 1.3622(–27)

Table 3 Values of I(m,T) for m= –0.5 and m= –1; A(B) stands for A·10B

t
I(–0.5,T) I(–1,T)

Present Numerical Present Numerical

1 5.6335(0) 5.6335(0) 2.1938(–1) 2.1938(–1)

2 1.3460(0) 1.3460(0) 4.8900(–2) 4.8900(–2)

3 3.7114(–1) 3.7114(–1) 1.3048(–2) 1.3048(–2)

4 1.0964(–1) 1.0964(–1) 3.7794(–3) 3.7794(–3)

5 3.3757(–2) 3.3757(–2) 1.1483(–3) 1.1483(–3)

6 1.0688(–2) 1.0688(–2) 3.6008(–4) 3.6008(–4)

7 3.4530(–3) 3.4503(–3) 1.1548(–4) 1.1548(–4)

8 1.1328(–3) 1.1328(–3) 3.7666(–5) 3.7665(–5)

9 3.7610(–4) 3.7610(–4) 1.2447(–5) 1.2447(–5)

10 1.2609(–4) 1.2609(–4) 4.1570(–6) 4.1570(–6)

15 5.8921(–7) 5.8921(–7) 1.9186(–8) 1.9186(–8)

20 3.0407(–9) 3.0407(–9) 9.8355(–11) 9.8355(–11)
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Table 3 Continued

t
I(–0.5,T) I(–1,T)

Present Numerical Present Numerical

25 1.6606(–11) 1.6606(–11) 5.3489(–13) 5.3489(–13)

30 8.4143(–14) 8.4143(–14) 3.0216(–15) 3.0216(–15)

40 2.5096(–18) 2.5096(–18) 1.0368(–19) 1.0368(–19)

50 8.3790(–23) 8.3790(–23) 3.7833(–24) 3.7833(–24)

60 3.1850(–27) 3.1850(–27) 1.4359(–28) 1.4359(–28)

70 1.2436(–31) 1.2436(–31) 5.6003(–33) 5.6003(–33)

Conclusions

In the present paper we have developed a method for the evaluation of the integral

T E RT T
0

T

m d∫ ′ − ′ ′exp( / )

which frequently occurs in the problems of thermal analysis. The values of the inte-
gral calculated by the present method agree well with numerical results both for m=0
and m≠0 and 1≤t≤70 (t=E/RT). On the other hand the recent prescription of Quanyin
and Su [6] for the evaluation of the integral can be applied only for m=0 and fails for
t<5.0 and never completely agrees with the numerical results for other values of t.
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